

STARS Maths Calculations Policy Thakeham Primary School

Date approved by Standards, Teaching \& Learning Committee: 01.09.17

Review Date: April 2019
Signed
Headteacher: 8. Nortor

Chair of Governors:

Addition

STARS schools Calculation Policy for Addition: Year 1

	Read, write and interpret mathematical statements using symbols,,$+-=$ Represent and use number bonds and related addition facts within 20 Add one digit and two digit numbers up to 20, including zero. Solve onestep problems using concrete objects and pictorial representations, and missing number problems. Given a number, identify (and use the language) one more
	Begin to compare (what's the same/different?) for commutative sums e.g $3+7=7+3$ Memorise and reason with number bonds to 10 \& 20 in several forms Add using objects, Numicon, cubes etc and number lines and tracks Check with everyday objects Ensure pre-calculation steps are understood, including: Counting objects (including solving simple concrete problems) Conservation of number: Recognise place value in numbers beyond 20 Counting as reciting and as enumerating
	Use a range of concrete and pictorial representations, including: Number lines
	Real everyday objects $\because<00000000$

STARS schools Calculation Policy for Addition: Year 3	
	Add numbers mentally, including: - a three digit number and ones - a three digit number and tens - a three digit number and hundreds Partition all numbers and recombine, start with $T U+T U \text { then } H T U+T U$ Use straws, dienes, place value counters, empty number lines Common mental calculation strategies: Partitioning and recombining Doubles and near doubles Use number pairs to 10 and 100 Adding near multiples of ten and adjusting Using patterns of similar calculations Using known number facts Bridging though ten, hundred Complementary addition
	Add numbers with up to three digits, using formal written (columnar) methods Add to three digit numbers using physical and abstract representations (e.g. straws, dienes, place value counters, empty number lines). $\begin{array}{\|cc\|} \hline 30+4 \\ 20+5 \\ \hline 50+9 \end{array} \Longleftrightarrow \begin{array}{r} 34 \\ +25 \\ \hline \end{array} ~ \begin{array}{r} 59 \\ \hline \end{array}$ $\left.\begin{array}{\|cc\|} \hline \begin{array}{c} 200+30+4 \\ 500+20+7 \\ 700+60+1 \\ 10 \end{array} & \begin{array}{c} 234 \\ \hline \end{array} \\ \hline 527 \\ 1 \end{array}\right]$ Revert to concrete representations if children find expanded/column
	Use a range of concrete, pictorial and abstract representations, including those below Bundles of straws Dienes and place value counters
	Addition of fractions with the same denominator Addition of fractions with the same denominator within one whole. $2+3=5$ 5 $\frac{2}{5}$ \square

STARS schools Calculation Policy for Addition: Year 4

	Practise mental methods with increasingly large numbers Consolidate partitioning and re-partitioning $\begin{aligned} 55+37 & =55+30+7 \\ & =85+7 \\ & =92 \end{aligned}$ Use compensation for adding too much/little and adjusting Use straws, Dienes, place value counters, Common mental calculation strategies: empty number lines etc. Partitioning and recombining Doubles and near doubles Use number pairs to 10 and 100 Adding near multiples of ten and adjusting Using patterns of similar calculations Using known number facts Bridging though ten, hundred Complementary addition
	Add numbers with up to four digits, using the formal written (columnar) method (with inverses) Add three digit numbers using columnar method and then move onto 4 digits. Include decimal addition for money. Revert to expanded methods if children find formal calculation method difficult
	Use physical/pictorial representations alongside expanded and columnar methods. Compensating in mental addition Place value cards \& counters to counters, support the expanded method in readiness for the column Re-partitioning
$\begin{aligned} & \text { Ti } \\ & \stackrel{\rightharpoonup}{\grave{N}} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \stackrel{\rightharpoonup}{\sim} \end{aligned}$	Addition of fractions with the same denominator to become fluent through a variety of increasingly complex problems beyond one whole Counting using simple fractions and decimals, both forwards and backwards$\frac{1}{2}+\frac{2}{4}=\frac{2}{4}+\frac{2}{4}=1$$1 / 2$ $1 / 4$ $1 / 4$

STARS Schools Calculation Policy for addition: Year 5

Division

STARS schools Calculation Policy for Division: Year 1

STARS schools Calculation Policy for Division: Year 2	
	- Recall and use multiplication and division facts for the 2,5 and 10 times tables, including recognizing odd and even numbers - Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication, division and equals signs - Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot. - Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, multiplication and division facts, including problems in contexts.
	The relationship between multiplication and division must be continually considered. $1 / 2 \text { of } 26=13$ $26 \div 2=13$ Pupils decode a problem first, represent it using manipulatives and jottings; and finally record it symbolically.
	Use a range of concrete and pictorial representations, including:
$\begin{aligned} & \text { Ti } \\ & \stackrel{\rightharpoonup}{n} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	Recognise, find, name and write fractions $1 / 3,1 / 4,3 / 4,2 / 4$ of a length, shape, set of objects or quantity Write simple fractions for example, $1 / 2$ of $6=3$ and recognise the equivalence of $1 / 2$ and $2 / 4$.

STARS schools Calculation Policy for Division: Year 3

STARS schools Calculation Policy for Division: Year 4

Pupils should be taught to:

- Recall multiplication and division facts for multiplication tables up to 12×12
- Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers
- Recognize and use factor pairs and commutativity in mental calculations

Pupils practise mental methods and extend this to three-digit numbers to derive facts.

Pupils should be taught to:

- multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as \mathbf{n} objects are connected to mobjects.
Pupils practise to become fluent in the formal written method of short multiplication and short division with exact answers.

Revert to expanded methods if children find formal calculation method difficult

Revert to chunking on a number line for children finding the short division method difficult
division by chunking on
a numberline

$$
96 \div 4=24
$$

Models f
Using manipulatives to devel of the short v

We can't make
the 1 hundred we have. Exchange the 1 hundred for 10 tens.

What's different about these models? What is the same?
$3 \longdiv { 1 3 5 }$
How many loto of 4 altogether?
$10+10+4=24$

Is for division
levelop a conceptual understanding lort written method

We now have 13 tens
$3 \longdiv { x ^ { 1 3 } 5 }$

What's different about these models? What is the same?

STARS schools Calculation Policy for Division: Year 5

Pupils should be taught to:

- Divide numbers up to 4 digits by a one digit number using the formal written method of short division and interpret remainders appropriately.

How many 5 s have been subtracted?
14 sets of 5 , with 3 left over.
Answer: $73 \div 5=14 \mathrm{r} 3$
'suo!̣e|nэеэ

Introducing remainders: 98 divided by 4

$$
=98 \div 4=\frac{98}{4}=24 \text { r } 2=24 \frac{1}{2}=24.5
$$

- Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number .
- Pupils connect equivalent fractions >1 that simplify to integers with division and other fractions >1 to division with remainders.
- Pupils connect multiplication by a fraction to using fractions as operators (fractions of), and to division.
- Pupils should make connections between percentages, fractions and decimals

STARS schools Calculation Policy for Division: Year 6

Pupils should be taught to:

- perform mental calculations, including with mixed operations and large numbers.
- use their knowledge of the order of operations to carry out calculations involving the four operations.
- identify common factors, common multiples and prime numbers.

- Solve problems involving addition, subtraction, multiplication and division
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

Pupils should be taught to:

- Divide numbers up to four digits by a two digit whole number using the formal written method of long division, and interpret remainders, fractions, or by rounding as appropriate for the context.
- Divide numbers up to four digits by a two digit whole number using the formal written method of short division where appropriate, interpreting remainders according to the context.

Long division

$432 \div 15$ becomes

Answer: 28 remainder 12
$432 \div 15$ becomes

$$
\frac{12}{15}=\frac{4}{5}
$$

Answer: $28 \frac{4}{5}$
$432 \div 15$ becomes

$$
\left.\begin{array}{lllll}
& & & 2 & 8 \\
& 5 & 4 & 3 & 2
\end{array}\right)
$$

Answer: 28.8

Revert to expanded methods if children find formal calculation method difficult

To introduce the long division model, use a calculation which can be represented both with manipulatives and by a short division algorithm. Use questioning and discussion to compare written methods.

- use common factors to simplify fractions,
- compare and order fractions, including fractions > 1
\bullet add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions
- divide proper fractions by whole numbers [for example, $1 / 3 \div 2=1 / 6$.]

\bullet-associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375.]
 cases where the answer has up to 2 dp .

Multiplication

STARS schools Calculation Policy for Multiplication: Year3

STARS schools Calculation Policy for Multiplication: Year 4

- recognise and show, using diagrams, families of common equivalent fractions

- understand the relation between non unit fractions and multiplication and division of quantities, with particular emphasis on tenths and hundredths.
- make connections between fractions of a length, of a shape and as a representation of one whole or set of quantities.
- use factors and multiples to recognise equivalent fractions
- and simplify where appropriate

$$
\frac{4}{10} \frac{6}{15} \frac{8}{20} \frac{10}{25} \frac{12}{30} \frac{14}{35} \frac{16}{40}
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{STARS schools Calculation Policy for Multiplication: Year 5} \\
\hline \& \multicolumn{8}{|l|}{\begin{tabular}{l}
- Multiply and divide numbers mentally drawing upon known facts \\
- Multiply and divide whole numbers and those involving decimals by 10, 100 \& 1000 \\
- Recognise and use square \& cube numbers (\& notation) \\
Pupils should be taught through. out that percentages, decimals and fractions are different ways of expressing proportions.
\end{tabular}} \\
\hline \& \begin{tabular}{l}
Whe \\
The are unde calcu totall prod
\end{tabular} \& \begin{tabular}{l}
bers up for the \\
nning Expan \\
product vertically the
\(\qquad\) \\
cts give fina
\end{tabular} \& \begin{tabular}{l}
4 digit wo digit \\
h TU x \\
d Meth
\end{tabular} \& a on mber \& wo \& \begin{tabular}{l}
umbe \\
become \\
24 \\
16 \\
44 \\
r: 384
\end{tabular} \& \begin{tabular}{l}
ormal written meth \\
ThHTU x U Short Method \\
Long Multiplica \\
Answer: 3224 \\
answer seem sensible
\end{tabular} \& \begin{tabular}{l}
including long \\
\(2741 \times 6\) becomes \\
Inswer: 16446 \\
Answer: 3224
\end{tabular} \\
\hline \& 356

\times

20 \& \begin{tabular}{l}
4

3000

60000

12000

\hline Total

 \&

500

10000

2000

71340

14268

85608
\end{tabular} \& 60

1200
240 \& 140

28 \& \& same and what is about these two ethods? \& $$
\begin{array}{r}
3567 \\
\times 24 \\
\hline 14268 \\
71340 \\
\hline 85608
\end{array}
$$

\hline
\end{tabular}

	STARS schools Calculation Policy for Multiplication: Year 6
	perform mental calculations, including with mixed operations and large numbers (increasingly large numbers \& more complex calculations) use all the multiplication tables to calculate mathematical statements in order to maintain fluency. use estimation to check answers to calculations \& determine, in the context of a problem, an appropriate degree of accuracy. identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places. Children should know the square numbers up to 12×12 \& derive the corresponding squares of multiples of 10 e.g. $80 \times 80=6400$ Use mental strategies to solve problems e.g. - $x 4$ by doubling and doubling again - $\mathrm{x5}$ by x 10 and halving - $\times 20$ by $\times 10$ and doubling - $x 9$ by multiplying by 10 and adjusting - $x 6$ by multiplying by 3 and doubling
	Multiply multi- digit numbers up to 4 digits by a two digit whole number using the formal written (short and long multiplication) Multiply one digit numbers with up to 2 decimal places by whole numbers.

Subtraction

STARS schools Calculation Policy for Subtraction: Year 2	
	Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: x a twodigit number and ones x a twodigit number and tens x two twodigit numbers x adding three one digit numbers Jottings to support informal methods: $54-32=22$ \square Bridge through 10 where necessary $32-17$
	Written recording: $\begin{aligned} 37-12 & =37-10+2 \\ & =27-2 \\ & =25 \end{aligned}$
	Informal methods to support written subtraction calculations Practical portioning of a 2 digit number Bundles of straws or dienes to represent and partition 2 digit numbers. Subtract (without decomposition) using partitioning and equipment, e.g. To calculate $35 \cdot 22$, remove 22 . Then record: 35-22=13. Continue to use of a range of concrete and pictorial representations from Year 1-including Bar model to support understanding of difference.
	Pupils should count in fractions up to 10 , starting from any number and using the and equivalence on the number line (for example, $1 \frac{1}{4}, 1 \frac{1}{2}, 13 / 4,2$.) Use concrete and pictorial models of fractions to assist with counting e.g. paper cups, plates, shapes etc.

STARS schools Calculation Policy for Subtraction: Year 3

STARS schools Calculation Policy for Subtraction: Year 4	
	Continue to practise mental methods with increasingly large numbers to aid fluency. (From Non-Statutory Guidance). Methods to support fluent calculation and encourage efficiency of method: $x \quad$ Find a small difference by counting up. E.g. 5003-4996 This could be done using an empty number line. x Subtract nearest multiple of ten and adjust. Children should recall and use number facts to $x \quad$ Partition larger numbers reduce the number of steps. Whenever possible, children should be encouraged to visualise number lines and other basic, supporting representations to promote fluent work without jottings.
	Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate (including inverses and money) Build on formal, extended method (See Year 3) using exchange wherever necessary. Continue to use representations and manipulatives to develop understanding of place value. $\begin{array}{cc\|} \hline 372-147= \\ 300+70+2 \\ \boldsymbol{- 1 0 0 + 4 0 + 7} & \begin{array}{c} 300+60+12 \\ \frac{-100+40+7}{200+20+5} \end{array} \\ \hline \begin{array}{c} 60 \end{array} \\ 300+70+2 \\ 100+40+7 \\ 200+20+5 \end{array}$ Apply understanding of subtraction with larger integers to that of decimals in context of money and measures. $\begin{array}{r} £ 54.23 \\ £ 12.12 \\ \hline £ 42.11 \end{array}$
	72.47 $/$ Dienes blocks or place value counters can be used to model calculations and the underlying place value concepts. Use physical and / or pictorial representations and expanded algorithms alongside columnar methods. Ask: What is the same? What's different? Compare and discuss the suitability of different methods in context. Pupils decide which operations and methods to use and why.

STARS schools Calculation Policy for Subtraction: Year 5

- Subtract numbers mentally with increasingly large numbers.
E.g. 12 462-2300 = 10162
- Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy.
- Pupils practise adding and subtracting decimals, including a mix of whole numbers and decimals, decimals with different numbers of decimal places, and complements of 1 (for example, 1-0.17=0.83).
- Pupils mentally add and subtract tenths, and one-digit whole numbers and tenths.

```
Basic Mental Strategies for Subtraction
* Find differences by counting up
- Partitioning
- Applying known facts do it?
- Bridging through }10\mathrm{ and multiples of 10
- Subtracting 9,11 etc. by compensating
- Counting on to,or back from the largest number
National Curriculum 1999
```

Children use of visualize the representation of choice. Referring back to physical representations as needed.

Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
(Pupils) practise adding and subtracting decimals.
Begin with three-digit numbers using formal, columnar method; then move into four-digit numbers.
As in Year 4, compare physical and / or pictorial representations and expanded algorithms alongside columnar methods. Ask: What is the same? What's different?
Compare and discuss the suitability of different methods, (mental or written), in context.
Revert to expanded methods whenever difficulties arise

Use physical and pictorial representations to stress the place value relationships between money, decimals and whole numbers. A place value mat such as the this one could be used, moving away from the traditional: Hundreds, tens and ones model used in Lower KS2 and KS1.

Subtract fractions with the same denominator and denominators that are multiples of the same number.
(Include fractions exceeding 1 as a mixed number.)
Solve problems involving number up to three decimal places.
They mentally add and subtract tenths, and one-digit whole numbers and tenths.

STARS schools Calculation Policy for Subtraction: Year 6

	Children: x Perform mental calculations, including with mixed operations and large numbers. x Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy. x They undertake mental calculations with increasingly large numbers and more complex calculations. Children draw on basic, Mental subtraction Strategies, (See Year 5.) Children use, or visualise, representation of choice. Refer back to physical representations as required.
	Add and subtract whole numbers with including and exceeding 4 digits (including decimals), including using formal written methods (columnar addition and subtraction). Solve problems involving the calculation and conversions of units of measure, using decimal notation of up to three decimal places where appropriate. Move towards consolidation of formal, columnar method. For more complex calculations, with increasingly larger or smaller numbers, compare representations and expanded algorithms alongside columnar methods. Ask: What is the same? What's different? Compare and discuss the suitability of different methods, (mental or written), in context. Revert to expanded methods whenever difficulties arise. Consolidate columnar methods, paying particular attention to the occurrence of zeros as place holders. Note: Crossing out on the top line
	Add and subtract fractions with different denominators and mixed numbers. They practise calculations with simple fractions and decimal fraction equivalents to aid fluency.

